Tuesday, December 4, 2012

The Cholesterol Hypothesis on the Beam: Dalcetrapib, PCSK9 inhibitors, and "off-target" effects of statins

The last month has witnessed the publication of three lines of research that could tip the balance of the evidence for the cholesterol hypothesis depending how things play out.  Followers of this blog know that I have a healthy degree of skepticism for the cholesterol hypothesis which was emboldened by studies of torcetrapib (blogged here and here) and anacetrapib that have come to light along with the failures of vytorin (ezetimibe; blogged here and here and hereand the addition of niacin to statins to improve cardiovascular outcomes in parallel with improvements in cholesterol numbers.

I think it's finally time to bury the CETP inhibitors. The November 29th NEJM (published online on November 5th) reports the results of the dal-OUTCOMES trial of dalcetrapib in patients with a recent acute coronary syndrome. Almost 16,000 patients were enrolled in this study of high risk patients, providing the study with ample power to detect meaningful improvements in cardiovascular outcomes - but alas, none were detected. The target is HDL, so the LDL hypothesis is not debunked by these data, but I think it is challenged nonetheless.

Bite the Bullet and Pull It: The NIKE approach to extubation.


I was very pleased to see McConville and Kress' Review article in the NEJM this week (December 6, 2012 issue) regarding weaning patients from the ventilator. I have long been a fan of the University of Chicago crew as well as their textbook and their pioneering study of sedation interruption a decade ago.


In their article, they provide a useful review of the evidence relating to the discontinuation of mechanical ventilation (aka weaning , liberation, and various other buzz words used to describe this process.) Yet at the end of the article, in describing their approach to discontinuation of mechanical ventilation, they provide a look into the crystal ball that I think and hope shows what the future may hold in this area. In a nutshell, they push the envelope and try to extubate patients as quickly as they can, ignoring inconvenient conventional parameters that may impede this approach in select instances.

Much of the research in this field has been dedicated to trying to predict the result of extubating a patient. (In the case of the most widely cited study, by Yang and Tobin, the research involves predicting the result of a predictor of the ultimate result of interest. This reminds me of Cervantes' Quijote - a story within a story within a story....but I digress.) And this is a curious state of affairs. What other endeavor do we undertake in critical care medicine where we wring our hands and so helplessly and wantonly try to predict what is going to happen? Don't we usually just do something and see what happens, making corrections along the way, in silent acknowledgment that predicting the future is often a fool's errand? What makes extubation so different? Why the preoccupation with prediction when it comes to extubation? Why not "Just Do It" and see what happens?

Wednesday, October 24, 2012

A Centrum a Day Keeps the Cancer at Bay?


Alerted as usual by the lay press to the provocative results of a non-provocative study, I read with interest the article in the October 17th JAMA by Gaziano and colleagues: Multivitamins in the Prevention of Cancer in Men. From the lay press descriptions (see: NYT summary and a less sanguine NYT article published a few days later,) I knew only that it was a positive (statistically significant) study, that the reduction in cancer observed was 8%, that a multivitamin (Centrum Silver) was used, and the study population included 14,000 male physicians.

Needless to say, in spite of a dormant hope something so simple could prevent cancer, I was skeptical. Despite decades, perhaps eons of enthusiasm for the use of vitamins, minerals, and herbal remedies, there is, to my knowledge (please, dear reader, direct me to the data if this is an omission) no credible evidence of a durable health benefit from taking such supplements in the absence of deficiency. But supplements have a lure that can beguile even the geniuses among us (see: Linus Pauling). So before I read the abstract and methods to check for the level of statistical significance, the primary endpoint, the number of endpoints, and sources of bias, I asked myself: "What is the probability that taking a simple commercially available multivitamin can prevent cancer?" and "what kind of P-value or level of statistical significance would I require to believe the result?" Indeed, if you have not yet seen the study, you can ask yourself those same questions now.

Thursday, September 27, 2012

True Believers: Faith and Reason in the Adoption of Evidence

In last week's NEJM, in an editorial response to an article demonstrating that physicians, in essence, probability adjust (a la Expected Utility Theory) the likelihood that data are true based on the funding source of a study, editor-in-Chief Jeffery M. Drazen implored the journal's readership to "believe the data." Unfortunately, he did not answer the obvious question, "which data?" A perusal of the very issue in which his editorial appears, as well as this week's journal, considered in the context of more than a decade of related research demonstrates just how ironic and ludicrous his invocation is.

This November marks the eleventh year since the publication, with great fanfare, of Van den Berghe's trial of intensive insulin therapy (IIT) in the NEJM.  That article was followed by what I have called a "premature rush to adopt the therapy" (I should have called it a stampede), creation of research agendas in multiple countries and institutions devoted to its study, amassing of reams of robust data failing to confirm the original results, and a reluctance to abandon the therapy that is rivaled in its tenacity only by the enthusiasm that drove its adoption.  In light of all the data from the last decade, I am convinced of only one thing - that it remains an open question whether control of hyperglycemia within ANY range is of benefit to patients.
Suffice it to say that the Van den Berghe data have not suffered from lack of believers - the Brunkhorst, NICE-SUGAR, and Glucontrol data have - and  it would seem that in many cases what we have is not a lack of faith so much as a lack of reason when it comes to data.  The publication of an analysis of hypoglycemia using the NICE-SUGAR database in the September 20th NEJM, and a trial in this week's NEJM involving pediatric cardiac surgery patients by by Agus et al gives researchers and clinicians yet another opportunity to apply reason and reconsider their belief in IIT and for that matter the treatment of hyperglycemia in general.

Thursday, May 24, 2012

Fever, external cooling, biological precedent, and the epistemology of medical evidence

It is rare occasion that one article allows me to review so many aspects of the epistemology of medical evidence, but alas Schortgen et al afforded me that opportunity in the May 15th issue of AJRCCM.

The issues raised by this article are so numerous that I shall make subsections for each one. The authors of this RCT sought to determine the effect of external cooling of febrile septic patients on vasopressor requirements and mortality. Their conclusion was that "fever control using external cooling was safe and decreased vasopressor requirements and early mortality in septic shock." Let's explore the article and the issues it raises and see if this conclusion seems justified and how this study fits into current ICU practice.

PRIOR PROBABILITY, BIOLOGICAL PLAUSIBILITY, and BIOLOGICAL PRECEDENTS

These are related but distinct issues that are best considered both before a study is planned, and before its report is read. A clinical trial is in essence a diagnostic test of a hypothesis, and like a diagnostic test, its influence on what we already know depends not only on the characteristics of the test (sensitivity and specificity in a diagnostic test; alpha and power in the case of a clinical trial) but also on the strength of our prior beliefs. To quote Sagan [again], "extraordinary claims require extraordinary evidence." I like analogies of extremes: no trial result is sufficient to convince the skeptical observer that orange juice reduces mortality in sepsis by 30%; and no evidence, however cogently presented, is sufficient to convince him that the sun will not rise tomorrow. So when we read the title of this or any other study, we should pause to ask: What is my prior belief that external cooling will reduce mortality in septic shock? That it will reduce vasopressor requirements?