Showing posts with label PCSK9 inhibitors. Show all posts
Showing posts with label PCSK9 inhibitors. Show all posts

Tuesday, April 4, 2017

Tipping the Scales of Noninferiority: Abbott's "Emboshield and Xact Carotid Stent System"

I just stumbled across this and think it's worth musing over it a bit.  The recently published ACT I trial by Rosenfield et al is a noninferiority trial of an already approved device, the "emboshield embolic protection system" used in conjunction with the "Xact carotid stent system" both proprietary devices from Abbott.  I'm scrutinizing this trial (and others) to determine if adequate justification is given for the noninferiority hypothesis around which the trial is designed.  One thing I'm looking for is  evidence that there are clear secondary advantages of the novel or experimental therapy that justify accepting some degree of worse efficacy, compared to the active control, which falls within the prespecified margin of noninferiority.  This is what the authors (or their ghosts) write in the introduction:
"Most carotid revascularization procedures in the United States are carotid endarterectomies performed for the treatment of asymptomatic atherosclerotic disease. Revascularization is also performed by means of stenting with devices to capture and remove emboli (“embolic protection” devices).3,4 In the Carotid Revascularization Endarterectomy versus Stenting Trial (CREST), no significant difference was found between carotid endarterectomy and stenting with embolic protection for the treatment of atherosclerotic carotid bifurcation stenosis with regard to the composite end point of stroke, death, or myocardial infarction.5 CREST included both symptomatic and asymptomatic patients, and it was not sufficiently powered to discern whether the carotid endarterectomy and stenting with embolic protection were equivalent according to symptomatic status. The primary aim of the Asymptomatic Carotid Trial (ACT) I was to compare the outcomes of carotid endarterectomy versus stenting with embolic protection in patients with asymptomatic severe carotid-artery stenosis who were at standard risk for surgical complications."
That's a mouthful, to say the least, and probably ought to be expectorated.

Monday, May 2, 2016

Hope: The Mother of Bias in Research

I realized the other day that underlying every slanted report or overly-optimistic interpretation of a trial's results, every contorted post hoc analysis, every Big Pharma obfuscation, is hope.  And while hope is generally a good, positive emotion, it engenders great bias in the interpretation of medical research.  Consider this NYT article from last month:  "Dashing Hopes, Study Shows Cholesterol Drug Had No Effect on Heart Health."  The title itself reinforces my point, as do several quotes in the article.
“All of us would have put money on it,” said Dr. Peter Libby, a Harvard cardiologist. The drug, he said, “was the great hope.”
 Again, hope is wonderful, but it blinds people to the truth in everyday life and I'm afraid researchers are no more immune to its effects than the laity.  In my estimation, three main categories of hope creep into the evaluation of research and foments bias:

  1. Hope for a cure, prevention, or treatment for a disease (on the part of patients, investigators, or both)
  2. Hope for career advancement, funding, notoriety, being right (on the part of investigators) and related sunk cost bias
  3. Hope for financial gain (usually on the part of Big Pharma and related industrial interests)
Consider prone positioning for ARDS.  For over 20 years, investigators have hoped that prone positioning improves not only oxygenation but also outcomes (mostly mortality).  So is it any wonder that after the most recent trial, in spite of the 4 or 5 previous failed trials, the community enthusiastically declared "success!"  "Prone Positioning works!"  Of course it is no wonder - this has been the hope for decades.

But consider what the most recent trial represents through the lens of replicability:  a failure to replicate previous results showing that prone positioning does not improve mortality.  The recent trial is the outlier.  It is the "false positive" rather than the previous trials being the "false negatives."

This way of interpreting the trials of prone positioning in the aggregate should be an obvious one, and it astonishes me that it took me so long to see the results this way - as a single failure to replicate previously replicable negative results.  But it hearkens to the underlying bias - we view results through the magnifying glass of hope, and it distorts our appraisal of the evidence.

Indeed, I have been accused of being a nihilist because of my views on this blog, which some see as derogating the work of others or an attempt to dash their hopes.  But these critics engage, or wish me to engage in a form of outcome bias - the value of the research lies in the integrity of its design, conduct, analysis, and reporting, not in its results.  One can do superlative research and get negative results, or shoddy research and get positive results.  My goal here is and always has been to judge the research on its merits, regardless of the results or the hopes that impel it.

(Aside:  Cholesterol researchers have a faith or hope in the cholesterol hypothesis - that cholesterol is a causal factor in pathways to cardiovascular outcomes.  Statin data corroborate this, and preliminary PCSK9 inhibitor data do, too.  But how quickly we engage in hopeful confirmation bias!  If cholesterol is a causal factor, it should not matter how you manipulate it - lower the cholesterol, lower cardiovascular events.  The fact that it does appear to matter how you lower it suggests that either there are multiplicity of agent effects (untoward and unknown effects of some agents negate some their beneficial effects in the cholesterol causal pathway) or that cholesterol levels are epiphenomena - markers of the effects of statins and PCSK9 inhibitors on the real, but as yet undelineated causal pathways.  Maybe the fact that we can easily measure cholesterol and that it is associated with outcomes in untreated individuals is a convenient accident of history that led us to trial statins which work in ways that we do not yet understand.)

Saturday, November 16, 2013

The Cardiologist Giveth, then the Cardiologist Taketh Away: Revision of the Cholesterol Guidelines

There has been quite a stir this week with the publication of the newest revision of the ACC/AHA guidelines for the treatment of cholesterol.  The New York Times is awash with articles summarizing or opining on the changes and many of the authors are perspicacious observers:
As the old Spanish proverb states, "rio revuelto, ganancia de pescadores" - when the river is stirred up, the fishermen benefit.  I will admit that I'm gloating a bit since I consider the new guidelines to be a tacit affirmative nod to several posts on the topic of the cholesterol hypothesis (CH).  (More posts here and here and here, among several others - search for "cholesterol" or "causal pathways" on the Medical Evidence Blog search bar.)

Tuesday, December 4, 2012

The Cholesterol Hypothesis on the Beam: Dalcetrapib, PCSK9 inhibitors, and "off-target" effects of statins

The last month has witnessed the publication of three lines of research that could tip the balance of the evidence for the cholesterol hypothesis depending how things play out.  Followers of this blog know that I have a healthy degree of skepticism for the cholesterol hypothesis which was emboldened by studies of torcetrapib (blogged here and here) and anacetrapib that have come to light along with the failures of vytorin (ezetimibe; blogged here and here and hereand the addition of niacin to statins to improve cardiovascular outcomes in parallel with improvements in cholesterol numbers.

I think it's finally time to bury the CETP inhibitors. The November 29th NEJM (published online on November 5th) reports the results of the dal-OUTCOMES trial of dalcetrapib in patients with a recent acute coronary syndrome. Almost 16,000 patients were enrolled in this study of high risk patients, providing the study with ample power to detect meaningful improvements in cardiovascular outcomes - but alas, none were detected. The target is HDL, so the LDL hypothesis is not debunked by these data, but I think it is challenged nonetheless.