Showing posts with label normalization fallacy. Show all posts
Showing posts with label normalization fallacy. Show all posts

Thursday, February 4, 2016

Diamox Results in Urine: General and Specific Lessons from the DIABOLO Acetazolamide Trial

The trial of acetazolamide to reduce duration of mechanical ventilation in COPD patients was published in JAMA this week.  I will use this trial to discuss some general principles about RCTs and make some comments specific to this trial.

My arguable but strong prior belief, before I even read the trial, is that Diamox (acetazolamide) is ineffectual in acute and chronic respiratory failure, or that it is harmful.  Its use is predicated on a "normalization fallacy" which guides practitioners to try attempt to achieve euboxia (normal numbers).  In chronic respiratory acidosis, the kidneys conserve bicarbonate to maintain normal pH.  There was a patient we saw at OSU in about 2008 who had severe COPD with a PaCO2 in the 70s and chronic renal failure with a bicarbonate under 20.  A well-intentioned but misguided resident checked an ABG and the patient's pH was on the order of 7.1.  We (the pulmonary service) were called to evaluate the patient for MICU transfer and intubation, and when we arrived we found him sitting at the bedside comfortably eating breakfast.  So it would appear that if the kidneys can't conserve enough bicarbonate to maintain normal pH, patients can get along with acidosis, but obviously evolution has created systems to maintain normal pH.  Why you would think that interfering with this highly conserved system to increase minute ventilation in a COPD patient you are trying to wean is beyond the reach of my imagination.  It just makes no sense.

This brings us to a major problem with a sizable proportion of RCTs that I read:  the background/introduction provides woefully insufficient justification for the hypothesis that the RCT seeks to test.  In the background of this paper, we are sent to references 4-14.  Here is a summary of each:

4.)  A review of metabolic alkalosis in a general population of critically ill patients
5.)  An RCT of acetazolamide for weaning COPD patients showing that it doesn't work
6.)  Incidence of alkalosis in hospitalized patients in 1980
7.)  A 1983 translational study to delineate the effect of acetazolamide on acid base parameters in 10 paitnets
8.)  A 1982 study of hemodynamic parameters after acetazolamide administration in 12 patients
9.)  A study of metabolic and acid base parameters in 14 patients with cystic fibrosis 
10.) A retrospective epidemiological descriptive study of serum bicarbonate in a large cohort of critically ill patients
11.)  A study of acetazolamide in anesthetized cats
12 - 14).  Commentary and pharmacodynamic studies of acetazolamide by the authors of the current study

Sunday, October 11, 2015

When Hell Freezes Over: Trials of Temperature Manipulation in Critical Illness

The bed is on fire
Two articles published online ahead of print in the NEJM last week deal with actual and attempted temperature manipulation to improve outcomes in critically ill patients.

The Eurotherm3235 trial was stopped early because of concerns of harm or futility.  This trial enrolled patients with traumatic brain injury (TBI) and elevated intracranial pressure (ICP) and randomized them to induced hypothermia (which reduces ICP) versus standard care.  There was a suggestion of worse outcomes in the hypothermia group.  I know that the idea that we can help the brain with the simple maneuver of lowering body temperature has great appeal and what some would call "biological plausibility" a term that I henceforth forsake and strike from my vocabulary.  You can rationalize the effect of an intervention any way you want using theoretical biological reasoning.  So from now on I'm not going to speak of biological plausibility, I will call it biological rationalizing.  A more robust principle, as I have claimed before, is biological precedent - that is, this or that pathway has been successfully manipulated in a similar way in the past.  It is reasonable to believe that interfering with LDL metabolism will improve cardiovascular outcomes because of decades of trials of statins (though agents used to manipulate this pathway are not all created equal).  It is reasonable to believe that intervening with platelet aggregation will improve outcomes from cardiovascular disease because of decades of trials of aspirin and plavix and others.  It is reasonable to doubt that manipulation of body temperature will improve any outcome because there is no unequivocal precedent for this, save for warming people with hypothermia from exposure - which basically amounts to treating the known cause of their ailment.  This is one causal pathway that we understand beyond a reasonable doubt.  If you get exposure, you freeze to death.  If we find you still alive and warm you, you may well survive.